134 research outputs found

    A reduced-reference perceptual image and video quality metric based on edge preservation

    Get PDF
    In image and video compression and transmission, it is important to rely on an objective image/video quality metric which accurately represents the subjective quality of processed images and video sequences. In some scenarios, it is also important to evaluate the quality of the received video sequence with minimal reference to the transmitted one. For instance, for quality improvement of video transmission through closed-loop optimisation, the video quality measure can be evaluated at the receiver and provided as feedback information to the system controller. The original image/video sequence-prior to compression and transmission-is not usually available at the receiver side, and it is important to rely at the receiver side on an objective video quality metric that does not need reference or needs minimal reference to the original video sequence. The observation that the human eye is very sensitive to edge and contour information of an image underpins the proposal of our reduced reference (RR) quality metric, which compares edge information between the distorted and the original image. Results highlight that the metric correlates well with subjective observations, also in comparison with commonly used full-reference metrics and with a state-of-the-art RR metric. © 2012 Martini et al

    Culture shapes how we look at faces

    Get PDF
    Background: Face processing, amongst many basic visual skills, is thought to be invariant across all humans. From as early as 1965, studies of eye movements have consistently revealed a systematic triangular sequence of fixations over the eyes and the mouth, suggesting that faces elicit a universal, biologically-determined information extraction pattern. Methodology/Principal Findings: Here we monitored the eye movements of Western Caucasian and East Asian observers while they learned, recognized, and categorized by race Western Caucasian and East Asian faces. Western Caucasian observers reproduced a scattered triangular pattern of fixations for faces of both races and across tasks. Contrary to intuition, East Asian observers focused more on the central region of the face. Conclusions/Significance: These results demonstrate that face processing can no longer be considered as arising from a universal series of perceptual events. The strategy employed to extract visual information from faces differs across cultures

    Dynamic, Task-Related and Demand-Driven Scene Representation

    Get PDF
    Humans selectively process and store details about the vicinity based on their knowledge about the scene, the world and their current task. In doing so, only those pieces of information are extracted from the visual scene that is required for solving a given task. In this paper, we present a flexible system architecture along with a control mechanism that allows for a task-dependent representation of a visual scene. Contrary to existing approaches, our system is able to acquire information selectively according to the demands of the given task and based on the system’s knowledge. The proposed control mechanism decides which properties need to be extracted and how the independent processing modules should be combined, based on the knowledge stored in the system’s long-term memory. Additionally, it ensures that algorithmic dependencies between processing modules are resolved automatically, utilizing procedural knowledge which is also stored in the long-term memory. By evaluating a proof-of-concept implementation on a real-world table scene, we show that, while solving the given task, the amount of data processed and stored by the system is considerably lower compared to processing regimes used in state-of-the-art systems. Furthermore, our system only acquires and stores the minimal set of information that is relevant for solving the given task

    Could sound be used as a strategy for reducing symptoms of perceived motion sickness?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Working while exposed to motions, physically and psychologically affects a person. Traditionally, motion sickness symptom reduction has implied use of medication, which can lead to detrimental effects on performance. Non-pharmaceutical strategies, in turn, often require cognitive and perceptual attention. Hence, for people working in high demand environments where it is impossible to reallocate focus of attention, other strategies are called upon. The aim of the study was to investigate possible impact of a mitigation strategy on perceived motion sickness and psychophysiological responses, based on an artificial sound horizon compared with a non-positioned sound source.</p> <p>Methods</p> <p>Twenty-three healthy subjects were seated on a motion platform in an artificial sound horizon or in non-positioned sound, in random order with one week interval between the trials. Perceived motion sickness (Mal), maximum duration of exposure (ST), skin conductance, blood volume pulse, temperature, respiration rate, eye movements and heart rate were measured continuously throughout the trials.</p> <p>Results</p> <p>Mal scores increased over time in both sound conditions, but the artificial sound horizon, applied as a mitigation strategy for perceived motion sickness, showed no significant effect on Mal scores or ST. The number of fixations increased with time in the non-positioned sound condition. Moreover, fixation time was longer in the non-positioned sound condition compared with sound horizon, indicating that the subjects used more time to fixate and, hence, assumingly made fewer saccades.</p> <p>Conclusion</p> <p>A subliminally presented artificial sound horizon did not significantly affect perceived motion sickness, psychophysiological variables or the time the subjects endured the motion sickness triggering stimuli. The number of fixations and fixation times increased over time in the non-positioned sound condition.</p

    Usability of the SAFEWAY@SCHOOL system in children with cognitive disabilities

    Get PDF
    PurposeSAFEWAY2SCHOOL is a programme based on several systems for the enhancement of school transportation safety for children. The aim of the study was to explore whether children with cognitive disabilities will notice, realise, understand, trust and accept the SAFEWAY2SCHOOL system and act in accordance with its instructions. Methods Fourteen children with cognitive disabilities and a control group of 23 children were shown five videos of scenarios involving journeys to and from school. During the first viewing visual scanning patterns were recorded with an eye tracking device. After a second viewing the participant was asked ten questions per scenario. Five questions addressed what the children saw on the video, and the remaining five what they would need to know and/or do within the scenario. Additional ratings of trust, likability, acceptability and usability were also collected. Results Very few differences were found in the visual scanning patterns of children with disabilities compared to children who participated in the control group. Of the 50 questions regarding what children saw or needed to know and/or do, only one significant difference between groups was found. No significant differences were found regarding self-reported ratings of trust, acceptability or usability of the system. Despite some significant differences across five of the 11 likability aspects, ratings were consistently high for both groups. Conclusions Children with cognitive disabilities proved that the SAFEWAY2SCHOOL system is as useful for them as it was for children in the control group. However, a valid estimation of the full utility of SAFEWAY2SCHOOL requires in situ testing of the system with these children

    Human Visual Search Does Not Maximize the Post-Saccadic Probability of Identifying Targets

    Get PDF
    Researchers have conjectured that eye movements during visual search are selected to minimize the number of saccades. The optimal Bayesian eye movement strategy minimizing saccades does not simply direct the eye to whichever location is judged most likely to contain the target but makes use of the entire retina as an information gathering device during each fixation. Here we show that human observers do not minimize the expected number of saccades in planning saccades in a simple visual search task composed of three tokens. In this task, the optimal eye movement strategy varied, depending on the spacing between tokens (in the first experiment) or the size of tokens (in the second experiment), and changed abruptly once the separation or size surpassed a critical value. None of our observers changed strategy as a function of separation or size. Human performance fell far short of ideal, both qualitatively and quantitatively

    Segregation of object and background motion in the retina

    Get PDF
    An important task in vision is to detect objects moving within a stationary scene. During normal viewing this is complicated by the presence of eye movements that continually scan the image across the retina, even during fixation. To detect moving objects, the brain must distinguish local motion within the scene from the global retinal image drift due to fixational eye movements. We have found that this process begins in the retina: a subset of retinal ganglion cells responds to motion in the receptive field centre, but only if the wider surround moves with a different trajectory. This selectivity for differential motion is independent of direction, and can be explained by a model of retinal circuitry that invokes pooling over nonlinear interneurons. The suppression by global image motion is probably mediated by polyaxonal, wide-field amacrine cells with transient responses. We show how a population of ganglion cells selective for differential motion can rapidly flag moving objects, and even segregate multiple moving objects

    Looking to Score: The Dissociation of Goal Influence on Eye Movement and Meta-Attentional Allocation in a Complex Dynamic Natural Scene

    Get PDF
    Several studies have reported that task instructions influence eye-movement behavior during static image observation. In contrast, during dynamic scene observation we show that while the specificity of the goal of a task influences observers’ beliefs about where they look, the goal does not in turn influence eye-movement patterns. In our study observers watched short video clips of a single tennis match and were asked to make subjective judgments about the allocation of visual attention to the items presented in the clip (e.g., ball, players, court lines, and umpire). However, before attending to the clips, observers were either told to simply watch clips (non-specific goal), or they were told to watch the clips with a view to judging which of the two tennis players was awarded the point (specific goal). The results of subjective reports suggest that observers believed that they allocated their attention more to goal-related items (e.g. court lines) if they performed the goal-specific task. However, we did not find the effect of goal specificity on major eye-movement parameters (i.e., saccadic amplitudes, inter-saccadic intervals, and gaze coherence). We conclude that the specificity of a task goal can alter observer’s beliefs about their attention allocation strategy, but such task-driven meta-attentional modulation does not necessarily correlate with eye-movement behavior

    Saccadic Eye Movements Minimize the Consequences of Motor Noise

    Get PDF
    The durations and trajectories of our saccadic eye movements are remarkably stereotyped. We have no voluntary control over these properties but they are determined by the movement amplitude and, to a smaller extent, also by the movement direction and initial eye orientation. Here we show that the stereotyped durations and trajectories are optimal for minimizing the variability in saccade endpoints that is caused by motor noise. The optimal duration can be understood from the nature of the motor noise, which is a combination of signal-dependent noise favoring long durations, and constant noise, which prefers short durations. The different durations of horizontal vs. vertical and of centripetal vs. centrifugal saccades, and the somewhat surprising properties of saccades in oblique directions are also accurately predicted by the principle of minimizing movement variability. The simple and sensible principle of minimizing the consequences of motor noise thus explains the full stereotypy of saccadic eye movements. This suggests that saccades are so stereotyped because that is the best strategy to minimize movement errors for an open-loop motor system
    corecore